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Abstract

This paper presents a derivation of the 2-port matrix for a folded quarter-wave side-branch resonator
including higher order modes but neglecting flow interaction effects. The model is restricted to coaxial
geometries and two-folds. The derivation is based on the mode matching technique and is verified by
measurements done on prototypes. A notable result from these experiments is the effects of a slit-like
leakage close to a rigid wall. A parametrical study finally investigates the influence of various lengths and
area ratios of the resonator resulting in a set of design rules.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Duct or pipe systems carrying low-frequency tonal noise are encountered in various
applications, such as intake and exhaust systems of vehicles and ventilation systems. To fulfil
regulations and comfort requirements, it is of interest to reduce these tones without increasing the
pressure drop. A standard solution to this problem is to add various kinds of side-branch
resonators such as the Helmholtz or the quarter-wave resonator. The former, being non-
harmonic, is mainly aimed at the fundamental frequency while the latter can handle also the odd
harmonics. A drawback of the quarter-wave resonator is its bulkiness; to attenuate a fundamental
of 100 Hz at room temperature a length of 0.85 m is required. One way to reduce the outer
dimensions is to fold the cavity as shown in Fig. 1.

A key issue in the study of resonators is the accurate determination of resonance frequencies.
Although, most resonators are used for low-frequency sounds and can be modelled using lumped
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elements and plane wave fields, effects of non-propagating modes (or near fields) at openings or
area discontinuities are important. Often the nearfield effects are included using the so-called end-
corrections, which for instance for the case of Helmholtz resonators has been studied extensively.

The folded resonator was suggested by Cummings already in the mid-1970s [1] but a more
systematic study of the effects of the folding, in particular, its effect on the resonance frequencies,
has not yet been presented. Cummings limited the analysis to two higher order modes and one
geometrical configuration. The present paper focuses on geometries of interest for exhaust system
applications and presents a model with an unlimited number of higher order modes validated by
measurements. Furthermore, the 2-port for a folded resonator is derived, a result most useful for
implementation in software dedicated to the analysis of sound in duct networks.

2. Theory

The folded quarter-wave resonator studied here consists of cylindrical pipes of circular or
annular cross-section, see Fig. 1. First, analytical expressions in terms of modal expansions for the
acoustic pressure and velocity in such ducts will be given. With these stated, straightforward
mode-matching will give the acoustic field throughout the device.

2.1. Wave equation

The study is restricted to small perturbations and neglects mean flow and visco-thermal effects.
By restricting the analysis to incident plane waves and concentric geometries, as illustrated in
Fig. 1, the problem is rotationally symmetric and there is thus no angular dependence. These
assumptions yield the wave equation
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where pðr; z; tÞ is the acoustic pressure inside the pipe and c the speed of sound. The frequency
domain solution P ¼

R
N

�N
pðr; z; tÞexpðiotÞ dt to the wave equation in circular and annular ducts

with hard walls is well known. Using the cross-sectional eigenfunctions cn;

cnðr; kr;nÞ ¼ J0ðkr;nrÞ � ð1 � dkr;nrmin;0Þ
J1ðkr;naÞ
N1ðkr;naÞ

N0ðkr;nrÞ; n ¼ 0; 1;y ð2Þ
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Fig. 1. Folded resonator with the acoustic transmission path indicated by arrows. The co-ordinate system as well as the

cross-sectional areas referred to are illustrated.
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it can be expressed as a sum of propagating modes:

Pðr; z;oÞ ¼
X

n

cn½Aneikz;nz þ Bne�ikz;nz�; ð3Þ

where Jm and Nm are the Bessel and Neumann functions of order m (m ¼ 0 or 1), An along with Bn

are the wave amplitudes for propagation in positive and negative direction, respectively, kr;n is the
radial wave number (or eigenvalue) determined by the hard wall boundary condition and kz;n is
the axial wave number. For a circular cross-section, a is the radius and for an annular it is the
inner radius, see Fig. 1. The Kronecker symbol dkr;nrmin;0 is equal to unity when either kr;n or the
minimum radius vanishes. The corresponding axial particle velocity can as usual be obtained from
the momentum equation:

Uðr; z;oÞ ¼
X

n

kz;n

or
cn½Aneikz;nz � Bne�ikz;nz�; ð4Þ

where r is the fluid density.

2.2. Partial fields

Based on Fig. 2 it is clear that the interior of the studied resonator may be divided into six
regions, consisting of either circular or annular ducts and where the velocity and pressure fields
can be expressed using Eqs. (3) and (4).

With the above expansions of acoustic pressure and velocity, the problem reduces to solving a
system of linear equations for a set of unknown wave amplitudes. Equations needed to solve these
unknowns are produced by the coupling conditions requiring the pressure and axial velocity to be
continuous across each interface between adjacent regions. Additional relations originate from the
hard wall boundary, imposing vanishing axial velocity at position z ¼ 0; l3 and l4; respectively.
Obviously, the modal expansions need to be truncated. Here for practical reasons, it is performed
equally for all regions, thus restricting the number of terms in each sum to N; an approach that
will violate the edge condition [2]. In short, this condition, which will secure a unique solution,
prescribes the truncated terms to be of the same magnitude in each zone. For a circular expansion,
the edge condition can be shown [3] to require that the ratio between the number of modes on
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Fig. 2. Lateral and front view of the folded resonator. The areas defined in Fig. 1 are given by S1 ¼ pa2
1; S2 ¼

pða2
3 � a2

1Þ and S3 ¼ pða2
4 � a2

3Þ: While the theory presented is general all the cases treated assume that the radius of the

inlet and outlet pipes (I and III) are equal.
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each side of the expansion equals the radius ratio, i.e., N1=N1 ¼ a1=a2: Even though this condition
is not strictly used here, the good agreement with experiments justifies the current approach. A
further motivation for this truncation is that most practical applications will require a design with
a radius ratio not too far from unity. In addition, and perhaps most importantly, the edge
condition is not crucial for the low-frequency plane wave range studied here. It is mainly
important for a correct high-frequency (asymptotic) behaviour [4].

With cN
n denoting the eigenfunction of order n in region N; as readily formulated from Eq. (2),

the following scalar product may be defined:

/cN
n jc

M
m Sa1;a2

¼
Z a2

a1

cN
n ðrÞc

M
m ðrÞr dr; ð5Þ

where ½a1; a2� constitutes the largest interval upon which both functions exist. It can be shown that
the eigenfunctions of a given region are orthogonal with respect to this product [5].
Eigenfunctions belonging to different regions are not orthogonal and the integral will then be a
measure of the coupling between modes at an interface.

In formulating the acoustic field in each region, it is assumed that solely plane waves can be
incident from infinity to regions I and III. This assumption is often satisfied in practice; consider,
for instance, the exhaust system of a car where the plane wave range covers the frequency range of
interest. Using the preceding notations, the pressure field in each domain can now be written as

PI ¼ AI
0c

I
0eikI

z;0z þ
XN

n¼0

BI
nc

I
ne�ikI

z;nz; ð6Þ

PII ¼
XN

n¼0

½AII
n c

II
n eikII

z;nz þ BII
n c

II
n e�ikII

z;nðz�l1Þ�; ð7Þ

PIII ¼ BIII
0 cIII

0 e�ikIII
z;0ðz�l1Þ þ

XN

n¼0

AIII
n cIII

n eikIII
z;nðz�l1Þ; ð8Þ

PIV ¼
XN

n¼0

½AIV
n cIV

n eikIV
z;nðz�l1Þ þ BIV

n cIV
n e�ikIV

z;nðz�l2Þ�; ð9Þ

PV ¼
XN

n¼0

½AV
n c

V
n eikV

z;nðz�l2Þ þ BV
n c

V
n e�ikV

z;nðz�l3Þ�; ð10Þ

PVI ¼
XN

n¼0

½AVI
n cVI

n eikVI
z;nðz�l4Þ þ BVI

n cVI
n e�ikVI

z;nðz�l2Þ�: ð11Þ

The choice of origin for each of the different modes ensures that the exponential factors are
decaying for non-propagating modes, which produces a numerically more robust formulation [6].
The axial velocities can be formulated using the same notation and are thus not explicitly given
here.
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2.3. Mode matching

This technique implies that the boundary conditions are satisfied in an averaged sense using
a Galerkin or integral (‘‘weak’’) formulation. By utilizing the above-stated orthogonality relations
a system of linear equations in the wave amplitudes An and Bn can be obtained.

Regions V and VI, each ended by a hard wall at z ¼ l3 and l4; respectively, will be considered
first. Using orthogonality in region VI implies

/UVIðz ¼ l4Þjc
VI
i Sa3;a4

¼ AVI
i � BVI

i e�ikVI
z;i ðl4�l2Þ ¼ 0 ð12Þ

and thus

AVI
i ¼ BVI

i e�ikVI
z;i ðl4�l2Þ for 0pipN: ð13Þ

Similarly for region V,

AV
i ¼ BV

i e�ikV
z;iðl3�l2Þ for 0pipN: ð14Þ

As suggested by Eqs. (13) and (14), the amplitudes AV
i and AVI

i can be determined independent of
the other domains, reducing the number of unknowns with 2ðN þ 1Þ:

Consider now the intersection between regions II, III and IV at z ¼ l1: The mode-matching
technique can be applied in several ways, which are all equivalent when an infinite number of
modes are included. But in practice the mode sums will be truncated and different mode matching
strategies are no longer equivalent. As suggested for instance by (Abom [6], it is convenient to
choose a formulation that reduces to the established plane wave solution, i.e., continuity of
pressure and volume velocity, in the case of no higher order modes. This can be achieved by using
the orthogonality relations for regions III and IV when matching pressure and region II when
matching velocity. Thus, applied to the continuity of velocity at z ¼ l1;

/U IIjcII
i S0;a3

¼ /U IIIjcII
i S0;a2

þ/U IVjcII
i Sa2;a3

: ð15Þ

This gives
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" #
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Matching the pressure fields of regions II and III,

/PIIIjcIII
i S0;a2

¼ /PIIjcIII
i S0;a2

; ð17Þ

yields
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and likewise for region II and IV

/PIVjcIV
i Sa2;a3

¼ /PIIjcIV
i Sa2;a3

: ð19Þ

We have

ðAIV
i þ BIV

i e�ikIV
z;i ðl1�l2ÞÞ

Z a3

a2

ðcIV
i Þ2r dr ¼

XN

n¼0

ðAII
n eikII

z;nl1 þ BII
n Þ
Z a3

a2

cII
n c

IV
i r dr; 0pipN: ð20Þ

As it is straightforward to derive the corresponding relations for the remaining intersections, this
is not reported here. The complete set of linear relations resulting from these and the above efforts
are most conveniently summarized in Table 1.

2.4. Numerical solution

The system of equations (6)–(11) contains a total of 10N þ 12 modal amplitudes. To obtain a
well-defined problem one can [6], e.g., specify the plane wave pressure and velocity at the inlet
(z ¼ 0; region I) or at the outlet (z ¼ l1; region III). This reduces the number of unknowns to
10N þ 10: Each line in Table 1 results in N þ 1 equations, i.e., a total of 8N þ 8 equations.
Together with the 2N þ 2 relations stemming from Eqs. (13) and (14) a complete system of linear
equations results. This system was coded and solved using Matlab routines. The solvability of the
system requires the system matrix to be non-singular and preferably to have a ‘‘small’’ condition
number to reduce numerical errors. Based on test calculations it was found that the suggested
formulation satisfies these requirements. In particular the choice of origin for the modes, as
discussed in Section 2.2, is critical to ensure a small condition number.
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Table 1

Mode matching relations

z ¼ 0
/PIjcI

iS0;a1
¼ /PIIjcI

iS0;a1

/U IjcII
i S0;a1

¼ /U IIjcII
i S0;a3

z ¼ l1
/PIIIjcIII

i S0;a2
¼ /PIIjcIII

i S0;a2

/PIVjcIV
i Sa2 ;a3

¼ /PIIjcIV
i Sa2 ;a3

/U IIIjcII
i S0;a2

þ/U IVjcII
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¼ /U IIjcII
i S0;a3

z ¼ l2
/PIVjcIV

i Sa2 ;a3
¼ /PVjcIV

i Sa2 ;a3

/PVIjcVI
i Sa3 ;a4

¼ /PVjcVI
i Sa3 ;a4

/U IVjcV
i Sa2 ;a3

þ/UVIjcV
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¼ /UVjcV
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In this application, it is not of primary interest to solve the entire acoustic field but rather to
obtain the 2-port or transfer matrix for a given frequency

P0
in

Q0
in

" #
¼

t11 t12

t21 t22

" #
P0

out

Q0
out

" #
; ð21Þ

where P0; Q0 stands for the plane wave pressure and volume velocity, respectively, at z ¼ 0 in
region I (in) and at z ¼ l1 in region III (out). This matrix is most suitably obtained by solving the
system for two different loads, typically {P0

out ¼ 1; Q0
out ¼ 0} and {P0

out ¼ 0; Q0
out ¼ 1}. From the

elements of the transfer matrix it is straightforward to derive the transmission loss of the folded
resonator [7],

TL ¼ 10log
1

4

Zoutð1 þ MoutÞ
2

Zinð1 þ MinÞ
2

t11 þ
t12

Zout

þ Zint21 þ
Zint22

Zout

����
����
2

 !
; ð22Þ

where Z denotes the wave impedance of the duct and M the Mach number.

3. Measurements

The measurements were performed in the flow acoustic test facility at the Marcus Wallenberg
Laboratory using the two-source method to determine the transfer matrix [8]. The measurement
technique and equipment are detailed in Ref. [9] and thus not further discussed here. Even though
the numerical simulations neglect any influence of mean flow, measurements were realized up to
Mach number 0.1 in order to preliminary investigate the effect of grazing flow on the folded
resonator.

3.1. The folded resonator

The resonator used in the measurements, shown in Fig. 3, was designed to attenuate low-
frequency tonal noise with a fundamental around 70 Hz, i.e., typical for the firing frequency of a
truck diesel.

The diameters given in Fig. 3 are outer diameters; the standard plastic pipes used have a wall
thickness increasing with the diameter: 3, 5 and 7.2 mm, respectively. To enable variations of the
axial dimensions the prototype was equipped with rubber sealing strips instead of being cemented.
This flexibility is utilized in additional studies that are not presented here but are reported in
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Fig. 3. The folded resonator used in the measurements. All measures are in mm and the outer diameters are specified.
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Ref. [10]. The conclusions of these studies are in agreement with the results presented below. In
order to test an arbitrary resonator the area ratio S3=S2 (see Fig. 1) used was 1.75, whereas for a
true quarter-wave resonator it should equal 1. This area difference generates a distinct non-
periodicity that is shown in Table 2 and Fig. 4. Concerning the effects of finite wall thickness in
the resonator, this effect was investigated [10] and the best fit to data was found by choosing the
radii so that each region corresponds to the air filled space. The frequency range was restricted to
the plane wave regime including eight higher order modes to model nearfield effects.

The measurements generally show a good agreement and a deviation of less than 2% at the
attenuation peaks (‘‘resonances’’). This deviation is relatively constant over the entire frequency
range and the calculated values are systematically larger, see Table 2. Yielding walls, reducing the
effective speed of sound in the measurements could cause this, the effect of finite wall thickness
mentioned above could also have some influence. Another source of systematic errors could of
course be a faulty definition of the geometrical length. In this case, however, the precision used to
build the resonator rules out this possibility. Table 2 shows that the first five harmonics are
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Table 2

Comparison between the calculated and measured attenuation peaks

Resonance Measured (Hz) Calculated (Hz) Difference (Hz)

1st 72 73 �1

2nd 283 287.5 �4.5

3rd 425 432.5 �7.5

4th 639 644 �5

5th 790 805.5 �15.5
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Fig. 4. Transmission loss measurement on a folded resonator; a1 ¼ a2; a3=a1 ¼ 1:59; a4=a1 ¼ 2:34; l1=a1 ¼ 1:59;
l2=a1 ¼ 25:68; l3 ¼ l2 þ l1; l4=a1 ¼ 8:63: Calculated N ¼ 8 (- - - -); measured (——). For the geometry, see Figs. 2 and 3.

R. Glav et al. / Journal of Sound and Vibration 273 (2004) 777–792784



predicted within a few Hertz. The frequency resolution of the measurement being 0.31 Hz for the
first two peaks and 2.5 Hz for higher frequencies. The increase of the simulated minimum
attenuation level with frequency is due to the first expansion and would also be present in an
analysis restricted to plane waves [10]. At the resonance peaks the measured transmission loss is
systematically less than the calculated and at minima the measured levels are higher. These effects
are mainly created by the neglect of viscous and thermal losses in the model, which leads to a
smoothing of the transmission loss curve. The effect increases with frequency and can also be
found in the subsequent measurements.

As indicated above, measurements with flow ranging up to a Mach number of 0.1 were also
performed for the current configuration. The objective was to evaluate the transmission loss of the
folded silencer in a more realistic case. As no effects of mean flow are included in the simulations
Fig. 5 only reports measured values. As expected at low frequencies, flow-induced losses lead to a
reduction and widening of the first peak. The results also indicate the tendency of the end-
correction (see Section 4.4) to ‘‘disappear’’ with increasing grazing flow, as reported earlier by,
e.g., Cummings [11]. This appears in Fig. 5 as a trend for a shift upwards in frequency with
increasing Mach number (compare 0 and 0.1).

3.2. A note on leakage

A well-known problem in the practical use of resonators is leakage between the different
cavities of the device. This is often encountered, e.g., in automotive silencers where an airtight
design is difficult to achieve with conventional manufacturing techniques. A leakage is critical as it
may considerably alter, or in the worst case totally ruin, the desired resonant character. This may
be illustrated with the resonator used above by rearranging the pipes so that region V almost
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Fig. 5. Influence of the Mach number on the transmission loss of a folded resonator in the low-frequency range. Same

case as in Fig. 4. Mach-number=0 (- - - -); Mach-number=0.05 ( ); Mach-number=0.1 (——).
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completely vanishes giving a slit-like leakage of width 0.55 mm in region VI, see Fig. 6. Thus,
instead of the desired single folded quarter wave resonator of physical length 530 mm and a
harmonic attenuation pattern with peaks at ka1 ¼ 0:07; 0:22; 0:37;y; a double folded non-
harmonic device of total length 940 mm with peaks at ka1 ¼ 0:03; 0:12; 0:18;y; is obtained, see
Fig. 7.

Apparently the effect of the leakage is quite well captured by the simulation. This may seem
surprising since it might be expected that viscous losses would become important for such a
narrow slit, with a width comparable to the viscous boundary layer thickness (0.25 mm at the first
peak). Since no dramatic viscous losses occur there is apparently negligible fluid motion and thus
there is negligible acoustic pressure drop through the leakage. The leakage will therefore act as a
‘‘zero’’ impedance element, which tends to ‘‘short circuit’’ the acoustic wall pressures in the two
branches. Obviously this result is connected to the presence of the rigid wall at z ¼ l3:
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Fig. 6. Lateral cut of the resonator with a slit-like leakage at the end wall. All measures are in mm.
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Fig. 7. Transmission loss measurement for the case with leakage; a1 ¼ a2; a3=a1 ¼ 1:59; a4=a1 ¼ 2:34; l1=a1 ¼ 1:59;
l2=a1 ¼ 25:68; l3 ¼ l2 þ e; l4=a1 ¼ 7:045: Calculated N ¼ 8 (- - - -); measured (——). For the geometry, see Figs. 2 and 6.
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4. Simulations

The usefulness of a certain resonator design is dependent upon a number of features such as
‘‘acoustical length’’, i.e., which fundamental resonance will be obtained for a given geometry,
width of the attenuation peaks and to what extent the resonator has a harmonic character. Here
width is defined as the relative bandwidth around a peak frequency where the transmission loss is
larger than (say) 20 dB. Below the presented model has been used to investigate the influence of
the geometrical parameters, i.e., the length and area of the different regions of the folded
resonator, upon these features. The basic dimensions of the resonator used for the simulations are
chosen to give a realistic design for exhaust system applications. This gives a slender shape with a
first frequency peak matching a typical IC-engine firing frequency (resonator length 20a1). All
simulations have been performed using eight higher order modes.

4.1. Equal area resonator

To obtain a harmonic character of a folded resonator it seems reasonable to keep the
cross-sectional area encountered by the standing wave field constant. In Fig. 8 such an ‘‘equal
area resonator’’ is presented and compared to the harmonic pattern of an ‘‘ideal’’ side-branch
quarter wave resonator. Clearly, the equal area resonator exhibits an almost perfect harmonic
character with a deviation of not more than 1% in the present example. As could be expected
from the mass character of the nearfield effects, the largest deviation is obtained for the higher
frequencies.

ARTICLE IN PRESS

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

10

20

30

40

50

60

T
ra

ns
m

is
si

on
 L

os
s 

[d
B

]

Helmholtz-number (ka1)

Fig. 8. Simulated transmission loss of a folded equal area resonator; a1 ¼ a2; a3 ¼
ffiffiffi
2

p
a1; a4 ¼

ffiffiffi
3

p
a1; l1 ¼ a1=2;

l2 ¼ l1 þ 10a1; l3 ¼ l2 þ a1=
ffiffiffi
8

p
; l4 ¼ l1: Note that the area ratio ‘‘resonator to main duct’’, i.e., S2=S1 ¼ S3=S1 is 1.

The vertical lines represent the harmonic pattern of the corresponding ideal quarter wave resonator. For the geometry,

see Fig. 2.
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The acoustical length of the folded resonator, defined as the length of the corresponding ideal
quarter wave resonator matching the first peak, is 4.6% larger than the geometrical length given
by the overall length of regions IV and VI (20a1). Deviations from this design will give a non-
harmonic character, at least for the higher attenuation peaks. Of course in applications with a
restricted number of harmonics such resonators may still be of interest.

4.2. Effect of inlet width

Simulations show that changes of the length of the reverse chamber, i.e., region V will break the
harmonic pattern obtained above. What remains then is to study the influence of the inlet to the
resonator, i.e., the length of region II. Consequently, this has been varied with respect to the equal
area resonator specified above. In Fig. 9, the effect of a 10 times elongated inlet section is shown.

Obviously, the harmonic pattern is very much conserved and moreover, the fundamental
frequency is unaltered. The larger opening also has a small affect on the width of the attenuation
peaks, but introduces an expansion chamber behavior as can be discerned from the figure. It
appears that the behavior at the peaks of the folded resonator is controlled by the main body of
the resonator and only weakly affected by the inlet section.

To further test this conclusion the inlet width has also been decreased to merely a tenth of the
equal area case. The result is shown in Fig. 10 again with the equal area resonator as reference.
For this more compact device there is a harmonic character for the first peaks. For higher
frequencies there are deviations from the harmonic character with a largest discrepancy of 2.1%
for the eighth resonance. It can also be noted that the fundamental frequency is lowered 3.0%
with respect to the equal area resonator.
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Fig. 9. Simulated transmission loss of a folded resonator with large inlet width; l1 ¼ 5a1 and the other data as in Fig. 8.

The dotted line represents the equal area resonator from Fig. 8.
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This implies that a geometrically more compact resonator acoustically appears to be longer, i.e.,
to produce a lower fundamental frequency compared to the equal area case. Consequently, the
end-correction is increasing with decreasing inlet width in the current example. Considering the
peak width it is weakly affected for the lowest peaks but higher up in frequency it is reduced.

4.3. Area of the folds

As seen in Section 4.2 the inlet area to the folded resonator typically has a small influence on the
attenuation peak width. The width of the peaks is instead controlled by the cross-sectional area of
the folds, i.e., is determined by the main body of the resonator. This is illustrated in Fig. 11, where
the reference equal area resonator (Section 4.1) is compared to an equal area resonator with five
times larger cross-section. Note, omission of the inlet width in this overall increase in area would
render a non-harmonic character (for the higher harmonics) as indicated by the results reported
above.

As seen from Fig. 11 the desired increase in peak width is obtained without any considerable
change in harmonic character. The deviation is less than 1%. Compared to the original equal area
resonator the fundamental frequency is lowered 5% implying a larger near field at, as
demonstrated in Section 4.4, mainly the reverse chamber (region V).

4.4. End-corrections

Before concluding the above observations in some simple design rules the relation between
geometrical and acoustical length will be further investigated. The case of the equal area
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Fig. 10. Simulated transmission loss of a folded resonator with a slit-like inlet; l1 ¼ a1=20 and the other data as in

Fig. 8. The vertical lines represent the harmonic pattern of the corresponding ideal quarter wave resonator. The dotted

line represents the equal area resonator from Fig. 8.
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resonator, which preserves an almost perfect harmonic pattern, will be further analyzed. The
difference between the acoustical and geometrical length L of the resonator is normally referred
to as the ‘‘end-correction’’ (DL). The end-correction captures the inherent mass character of
the incompressible field at the inlet (region II) and at the reverse chamber (region V). Using the
acoustical length, L þ DL; the classical rule for the ideal quarter wave resonator applies: maximum

attenuation for frequencies where the length equals odd multiples of one-quarter of the wavelength.
By using the derived model and analyzing resonators with the same length but with one (only inlet
DL) or two-folds (both inlet and reverse chamber DL), it is possible to separate the inlet and
reverse chamber end-corrections. Fig. 12 presents the relative end-correction for an equal area
resonator of geometrical length L equal to 20a1: In the figure the end-correction is split in two
parts representing the inlet and the reverse chamber, respectively. The overall obviously being the
sum of these two partial corrections. A clear difference in the character between the two curves
can be noted. The inlet correction reaches asymptotically a constant value, while the reverse
chamber correction is monotonically growing. The reason may be that the upstream pipe
dimension, along with the geometrical length of the resonator, are constant. An increase in cross-
sectional area of the folds will thus reshape the geometry of the inlet towards something similar to
a baffled expansion. The reverse chamber, on the other hand, will instead grow uniformly adding
an extra path to the sound wave, thereby increasing the end-correction relative the fixed
geometrical length.

Apparently, for most designs envisaged in practice the overall end-correction will be somewhere
between 2 and 5%.
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Fig. 11. The simulated transmission loss of an equal area resonator with 5 times larger cross-sectional area; a1 ¼ a2;
a3 ¼

ffiffiffi
6

p
a1; a4 ¼

ffiffiffiffiffi
11

p
a1; l1 ¼ 5a1=2; l2 ¼ l1 þ 10a1; l3 ¼ l2 þ

ffiffiffiffiffiffiffiffiffiffiffiffi
25=24

p
a1 and l4 ¼ l1; compared to the equal area

resonator of Section 4.1 represented by the dotted line. The vertical lines represent the harmonic pattern of the

corresponding ideal quarter wave resonator. For the geometry, see Fig. 2.
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4.5. Design rules

The results presented above along with further simulations not presented here [10] may be
summarized in a few simple rules. The rules apply for the type of folded resonator shown in Fig. 1
and for applications in the low-frequency plane wave range.

* To obtain a harmonic peak (‘‘resonance’’) pattern the cross-sectional area of the folded
side-branch should be constant throughout the device (equal area resonator).

This concerns not only the area of the folds S2 and S3 but also the annular inlet and
reverse sections, i.e., regions II and V with area 2pa1l1 and 2pa3ðl3 � l2Þ; respectively,
see Fig. 2.

* The width of the attenuation peaks (‘‘resonances’’) are controlled by the area of the folds
(S2 and S3) relative the main duct (S1) and are only weakly affected by the area of the inlet
or reverse sections.

* Reduction of the inlet width will lower the fundamental resonance compared to the
corresponding equal area resonator and not preserve the harmonic character.

* An increased inlet width will not increase the fundamental resonance compared to the
corresponding equal area resonator and preserve the harmonic character.
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Fig. 12. The relative end-correction of the inlet (dotted line) and of the reverse chamber, respectively, in an equal area

resonator; a2 ¼ a1; a3 ¼ a1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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p
; a4 ¼ a1
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p
; l2 ¼ l1 þ 10a1; l3 ¼ l1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2l1=a1 þ 1Þ

p
þ l2; l4 ¼ l1; as

function of the normalized inlet width. Note, l1=a1 ¼ 0:5 corresponds to an area ratio of 1 between the main pipe and

the resonator.
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5. Conclusions

A study of a folded side-branch resonator with applications to, e.g., low-frequency tones in
exhaust systems has been presented. A derivation of the 2-port matrix for the resonator including
higher order modes but neglecting mean flow is included. The result has been coded and is suitable
for implementation in software for acoustic plane wave analysis of duct networks, e.g., SID [12].
Being two-dimensional, the derived solution is restricted to coaxial geometries, but otherwise
enables modelling of various geometries like for instance an expansion chamber with extended
outlet. The model is based on the mode-matching technique and is validated by experiments done
on prototypes.

The model has been used to simulate the influence of various geometrical parameters upon
harmonic behaviour, peak width and end-corrections. These efforts are summarized in a few rules
for the design of folded side-branch resonators. An interesting result concerning leakage was
observed both in the simulations and experiments. A leakage (‘‘small opening’’) close to a hard
wall will act as acoustically transparent. This may be of practical interest as it enables the design
of a folded resonator with both a small inlet and a small reverse chamber resulting in a compact
resonator. Such a design would not affect the width of the lowest peaks and also produce at least
3–5 peaks that follow a harmonic pattern.

The present study was limited to two-folds but could straightforwardly although tediously be
extended to N folds in future works. This would make it possible to search for folded
configurations that include all harmonics of a fundamental, e.g., approximating the shape of a
conical horn [13]. Another item of interest requiring further investigations are the effects of mean
flow, for instance, to what extent flow induced losses could be reduced by using a slit-like inlet.
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